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I. INTRODUCTION

Since the earliest days of nuclear-magnetic resonance (NMR), adiabatic

rapid passage (ARP) has been recognized as one of the more important

consequences of the transient interaction of radiation and matter (Abragam,

1961; Allen and Eberly, 1975). Basically, the effect of ARP is a population

reversal between atomic or molecular states coupled by an electromagnetic

field, when either the field or the atomic energy level spacing is rapidly

swept through the resonance condition (the resonance condition being defined

as W0 = Wf, with w0 being the atomic resonance frequency and of the frequency

of the electromagnetic field). Quite early the conditions for its occurrence

were derived by

w /T << w -w fI < <  (1)

where w and T2 are the Rabi frequency and the transverse relaxation time,

respectively; these were given intuitive justification in the now classic

discussion of Powles (1958).

Powles' interpretation of the conditions for ARP is based on a Bloch

vector model of the interaction process, as illustrated in Fig. 1. In a

rotating coordinate system the Bloch vector, describing the state of the atom,

precesses with a frequency n about an effective field:

a + w

As the system is swept through the resonance condition, the direction of the

effective field changes by v radians. Thus, if the atom was initially in the

state corresponding to -z before passage, it will be in the state correspond-

ing to +z after passage. The rapidity condition, expressed as the left-hand

inequality of Eq. (1), ensures that the rotation of the effective field is

fast compared to its relaxation. The adiabaticity condition, expressed as the

inequality on the right-hand side of Eq. (1), nsures the Bloch vector's

3



A

= fl + wix

/BLOCH VECTOR

A

Fig, 1. The Bloch Vector lbdel of A1P. CA, (u -ea), and a represent
the precessional frequency of the KLo 2 h vedtor about the
effective field, the detuning, and the Rabi frequency,
respectively.
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ability to follow the change in the effective field's direction: The pre-

cessional notion of the Bloch vector must be much faster than the motion of

the effective field. The transverse relaxation time is used in Eq. (1),

because T2 4 T1 ; and if population reversal is to occur, the Bloch vector must

not be allowed to wander out of the rotating coordinate system xz plane.

Powles' description is thus both intuitively clear and simple, and for these

reasons has contributed greatly to the understanding of ARP.

In the present report, it is our purpose to discuss the physics of ARP

using the dressed atom model of radiative interactions; in particular, we will

consider the fully quantized dressed atom, where both the field and the atom

are quantized systems (Cohen-Tannoudji, 1977). Our aim is to obtain an

interpretation of the conditions for ARP which is as intuitively pleasing as

Powles', but one derived from a QED formalism. We will find that in the QED

formalism, the conditions for ARP can be interpreted as conditions for

minimizing the probability of dressed atomic-state transitions, and that this

probability is composed of two parts: a probability for nonadiabatic dressed

atomic-state transitions, which is completely analogous to the Landau-Zener

inelastic collision probability; and a probability for dressed atomic-state

relaxation.

Furthermore, as observed by Lau (1976), there is a similarity between the

Landau-Zener inelastic-collision problem and ARP which we will attempt to

highlight. In many cases of inelastic atomic or molecular collisions, the

process can be viewed intuitively as a transition between adiabatic states

near an avoided crossing (Tully, 1976). The adiabatic states are constructed

from molecular theory and the Born-Oppenheimer approximation, which pre-

supposes that the electronic motion of the approaching pair can adiabatically

adjust itself to changes in the internuclear separation. When the atoms

approach each other rapidly, however, this approximation breaks down, and the

term in the Hamiltonian that couple the electronic and nuclear motion give

rise to transitions between the adiabatic states. Since the problem is very

difficult to handle in the adiabatic representation, Zener worked with the so-

called diabatic basis set: a set of basis vectors that minimize the off-

diagonal matrix elements of the Hamiltonian (Tully, 1976; Zener, 1932). He

5



was then able to derive an expression for the transition probability between

adiabatic states in the vicinity of an avoided crossing. By considering the

ARP problem in a dressed atom formalism, it will be possible to both demon-

strate the equivalence of the Landau-Zener inelastic-collision problem and

ARP, and take full advantage of the already derived result.

6



II. DRESSED ATOM STATES AS ADIABATIC WAVEFUNCTIONS

It is well known that in the simple case of a two-level atom interacting

with a monochromatic field, the Haniltonian for the field-atom system can be

written in terms of a fictitious spin 1/2 and the photon creation/annihilation

operators at and a (Cohen-Tannoudji, 1977):

H- h [woSz + wa, t a + Sx (a + at)]

where the zero of energy for the atom is chosen midway between the two states

and the zero-point energy of the field has been neglected; w0, Wf, and X

represent the energy separation between the two atomic states, the energy of a

field photon, and the interaction strength, respectively. Dressed atom

states, or adiabatic states in the language of collision processes, are

constructed by diagonalizing the Hamiltonian:

u, U> -coo jle, n> + sin 1g, n + 1> (2a)

I, u -- sin -. e, n> + cos 1 g, n + 1> (2b)

where 1g, n + 1> and le, n> are the unperturbed atom-field states, which

correspond to diabatic states, and

tanO - AVnl -* 1)
(W0 - W f) (WO - Wf)

where (n + 1) is the mmber of photons In the unperturbed field and wI is

again defined as the Rabi frequency. The eigenfrequencies corresponding to

these dressed atom states are easily found to be

- =, -cn + 1 1- 2 /
1 1 2 + 2)1/2

u, "n !),of + ( + 2 2

and are displayed in F g. 2 as a function of the detuning A (A - w0 - (f).

7
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In the dressed atom model ARP occurs when the atom-field system enters

nd leaves the avoided crossing region in the same dressed atom state

Haroche, 1971). For example, if the passage starts with (w 0- Wf) << 0, then

:he dressed atom wavefunction lu, n> is well approximated by 1g, n + 1>: The

itom is in its lower energy eigenstate and there are n + 1 photons in the

ield. After passage we have (w - ) >> 0 and ju, n> is well approximated by

e, n>: The atom is in its upper energy eigenstate. Thus, if the dressed

ktom state does not change as the system traverses the avoided crossing

region, then

g, n + 1> + le, n>

which corresponds to population reversal.

It should be noted that by equating the dressed atom states of Eq. (2)

with eigenfunctions of the Hamiltonian we have assumed that a changes slowly

in time; this can be regarded as an optical analogue of the Born-Oppenheimer

approximation. However, in ARP as in the inelastic-collision problem treated

by Landau and Zener, we are interested in the conditions under which this

approximation breaks down. We will therefore find it more convenient to

consider the problem in the diabatic basis, and by performing the necessary

transformation we arrive at the following wave equations:

hw1

H 1g, n + 1> - E,1 g, n + 1> + -- Ie, n>

Hle, n> -1--- Ig, n + 1> + E2 le, n>

where

E-h [(n +jwf ]

E 2 h h[(n + )wf + 2J

9
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If the energy of the field's photons changes linearly in time, then

1(3
|.(E 2 - E) - A -at (3)

and the problem is formally equivalent to the one solved by Zener (1932).

Thus, by approaching the problem of ARP in the framework of dressed atoms, we

can immediately make contact with the problem of inelastic collisions treated

by Zener, and obtain the probability for an adiabatic passage through the

- avoided crossing region:

ad 1- exp(- " )r'

To maximize this probability ue obviously want

W: 2 >> 11-I L Iw I - Wfl

which is the condition expressed by the right-hand side of Eq. (1).

* 10
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III* RELAXATION OF THE DRESSED ATOM STATE
.1

When the dressed atom states are constructed by quantizing the electro-

magnetic field, it is well known that for a two-level system a "ladder" of

dressed-state doublets results. Cascades down this ladder represent the

physical pro;&. by which the field loses photons, and this often takes the

form of fluorescence into field modes other than the one strongly coupling the

two atomic states (Cohen-Tannoudji, 1977). Thus, we can consider two types of

relaxation process, which for generality we will call intra- and interdoublet

transitions; these are illustrated in Fig. 2 by the solid and wavy lines,

respectively. We should consider the interdoublet transitions as bare atom T1

processes, because in a sense they represent a "spin-lattice" relaxation as

defined by Bloembergen, Purcell, and Pound (19 4 8 ).a The spin-lattice

interaction describes the process by which energy is transferred from the spin

system to a heat reservoir, and in the case of fluorescence the reservoir is

composed of all available field modes. Similarly, we should identify the

Intradoublet transitions as bare atom pure dephasing processes (i.e.,T); they

result from a change in the phase of the atomic part of the dressed atom wave

function, and in the limit that 1Tc<< I (where -c is the time interval over

which the intradoublet transition interaction acts), there is no exchange of

energy with the fluorescent field modes (Reynaud and Cohen-Tannoudji,

1982).b  This is not to Imply, however, that intradoublet transitions do not

require energy. When these transitions result from dephasing collisions, an

energy exchange occurs with the kinetic energy of the colliding atoms.

-~* The bare atom picture corresponds to the diabatLc basis set discussed

herein. For a comparison between the bare atom and dressed atom descriptions
of radiative interactions, the reader is referred to Berman and Salomaa
(1982).

bit is interesting to note that when this condition Is violated (017c >> 1),
oo would expect the intradoublet transition rate to take on the meaning
of the T2e in Redfield's modified Bloch equations (Redfield, 1955).

*%.., " ° w? .rn . ....



Recently, Reynaud and Cohen-Tannoudji (1982) ha. -onsidered the problem

- of dressed atom relaxation in some detail. In particular, they have

considered the important special case of fluorescence (with a rate r) as the

interdoublet transition mechanism, and atomic dephasing collisions (with a

dephasing rate y) as the intradoublet transition mechanism. In what follows

we draw heavily on their results in developing a simple, approximate mans of

Including in the probability for ARP the effects of these relaxation

*mechanisms.

It is important to realize that not all the transitions they considered

need to be regarded as relaxation transitions In the present problem. In ARP

we are only concerned with the probability of merging from the avoided

crossing region of Fig. 2 in a particular unperturbed atomic elgenstate (i.e.,

le, n>). Thus, if we define aunun and Otntn as the density matrix elements

for the states Iu, n> and It, r>, respectively, then the quantity of interest
is

u a Ounun

(a similar quantity can be defined as t ). Thus, transitions like Iu, n> .

Iu, n - 1> have no effect on A , and therefore do not behave like relaxation.

We assume that the dressed atom starts the passage in the Iu, n eigen-

state with (w 0 - Wf) << 0 (i.e., 1u, n> - 1g, n + 1). For a particular

detuning A, the evolution of u is governed by the equationU

7t Ru(t) - -(2w + rl+ r~)H~)+ (v + rs 4rutr r)) u(t)+( rur ) (4)

where w is the intradoublet transition rate [w - y2/2(m + 2)] and ther

are the interdoublet transition rates as Illustrated in Fig. 2:

r[w + a 2) 1/2 _ S]2i/4(*2 + A2)

12
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I

*and

r,- r[(w + A 2 1/2 + A]2/,( 2 + '&2)

If we now let A be a function of time (A - jl t), but choose ji small enough

s that the passage is adiabatic, then Eq. (4) is a linear differential

equation with nonconstant coefficients describing the effects of relaxation

on Iu (t) as the field Is swept through resonance. The problem of the present

section is to compute A (t) at some time T after the passage: T will determine

the instant that the field has swept through the "range" of the avoided

crossing region, to be defined later, so that R u (T) will approximate the

probability for population reversal when relaxation alone is considered.

Integrating Eq. (4) formally with the boundary condition nu(- 1) 1, we

have for Ru(T) the equation

u(T) "I+ f (w + r t)dt -f (2w + ru + rtu) Ru M dt (5)

This equation can be solved to arbitrary precision by the method of successive

iterations. However, for the present problem we are primarily concerned with

situations for which Ru(t) remains nearly constant throughout the entire

passage. Thus, a first approximation is adequate for our purposes, in which

case the equation for H1 (T) becomes

S(T). i - f (w + r ) dtu zu

Substituting for w and r u and performing the integration one obtains

I -Y - + ' laI] r [I,,, + (a2 + 22 2 1/21

We now determine the range of the avoided crossing region by

deflaing 6 as the frequency interval about a0 over which the doublet

separation roughly doubles. We note that this definition Is equivalent to

13
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that of Levine and Bernstein (1974), except that they were considering the

range of an avoided crossing region between two potential energy curves of a

colliding pair of atoms. We thus find that

and

3ww I3 m I
JIWW l 1 (L NO 1l 6
U ISIa 2 8 CKT

where T2 is the total dephasing time for the bare atom. In order to minimize

the probability of relaxation during the passage through the avoided crossing

region, we therefore require

to /Tz >> a, "0-f
1 2 0 - wo1') - Oif

which is equivalent to the left-hand side in Eq. (1).

It is interesting to note that a similar expression for I u(-r) can be

obtained in a less precise, but possibly more intuitive, fashion. We assume

that the decay of a dressed atomistate can be adequately described in the

vicinity of the avoided crossing region by the rate I/T2 (we use the total

dephasing rate, so both intra- and interdoublet transitions relax the dressed

atom states), so that the probability of finding the dressed atom in any one

of the tu, n> eigenstates after a time T Is

u (-r) * exp(-rT 2 )

For a passage described by Eq. (3), assigning the width 6 to the avoided

crossing region, the probability for a dressed etom to enter and leave the

avoided crossing region in one of the lu, Q> eigenstates is then

I~Ir u WxP(- 1 a 1 1

for wi/T 2 << jul, which is of the sm order of magnitude as Eq. (6).

14



IV. APPROXIMATE FORMULA FOR THE DEGREE OF POPULATION REVERSAL IN ARP

The preceeding discussion has shown that the standard conditions of

achieving ARP can be interpreted as conditions for minimizing the probability

of dressed atomic-state transitions caused by nonadiabaticity and

relaxation. However, it is important to note that the two probabilities Pad

and u (T) were derived under contradictory assumptions regarding the magnitude

of the sweep rate Jul: In deriving Pad we essentially assumed that the

passage was fast enough so that relaxation could be ignored, while in

deriving I u(T) we explicitly assumed adiabaticity of the passage. Thus, these

two probabilities should be viewed as limiting forms of a more general

probability for ARP, PARp, which describes the passage when both

nonadibaticity and relaxation are important.

Unfortunately, a rigorous closed-form expression for PARP is difficult to

obtain; furthermore, if the closed-form expression is too complex, the

relevant physics may be obscured. Lau (1976) has analyzed ARP, including

relaxation effects, within a semiclassical dressed atom model. He found that

as time progresses after the field frequency has swept through resonance, the

probability of ARP assumes a particularly simple form. The probability may be

separated into two independent factors - one dealing with the sdiabaticity of

the passage, equivalent to our Pad; the other, depending parametrically on the

relaxation rates, describing the effects of relaxation. With this result in

mind, we assume that PALp for the fully quantized dressed atom model is

amenable to a similar factorization. Specifically, we approximate PARp by the

product of Pad and u(:

P . (I w(7P - ( xp(-

.The value of such an expression will not lie in the high accuracy of its

predictions, but in its ability to estimate the physical characteristics of

the phemomnon an the aback of an envelope."

15



As a particular example of the utility of Eq. (7), and in order to get

some idea of Its accuracy, we consider the case of a two-level atom with

density matrix elements a 9 and aee for the lower and upper unperturbed atomic

eigenstates, respectively, prior to passage. Since the strong field is con-

sidered far from resonance (w 0 - f << 0), the dressed atom density matrix

elements are given by Ru a agg and I- a ee* After the passage through reson-

ance (w 0 - f >> 0), the density matrix elements will have been altered, so

that

'a a + (l - P (8)

and

IT, -O'g PARPOee + (1- PAuP)Ogg (8b)

Obviously, if the density matrix is normalized prior to the passage, it

remains normalized after the passage, as can be seen by Eq. (8). Defining the

degree of population reversal as the fraction of atoms transferred from the

atomic ground state co the atomic excited state, i.e.,

F " See /0i9

we find that

F - P + (I - P0 (9)
ARP 1A"? a

As discussed by Camparo and Frueholz (1983). the Rabi frequency and re-

laxation rates are usually determined by ezperimtal conditions and limita-

tions. One is then forced to vary l1 in order to increase the degree of

population reversal. The approximate optimum value of let can be found by

setting the derivative of PARp with respect to Jl equal to zero. One then

finds that for rapid passages

16
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2

IQ( 10 21n (1 4 4w IT 2 /3)

for which the probability of ARP becomes

ARP a [x - tn(O + x)]/(1 + x) (10)

with

x ra (4toIT 2

This probability then determines the maximum degree of population reversal,

Fmaxe

In Fig. 3 the dotted line is a plot of Fmax as a function of normalized

Rabi frequency wlT 2, computed using Eqs. (9) and (10); the initial conditions

were chosen so that oee/ g M 0.27. We have also performed numerical calcu-

lations of Fmax using a bare atom, two-level density matrix approach (Camparo

and Frueholz, 1983). These solutions are displayed as the solid line In Fig.

3. Considering the approximations made in obtaining the closed-form solution,

the agreement is rather good; for this particular example the error

was -102. More important, however, the simple closed-form solution provides a

clear intuitive picture of the ARP process.

17
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Fig. 3. The Maximm Degree of Population Reversal as a Function of
Normalized Rabi Frequency. The dotted line is a calculation
based on the approximate value of PF derived in the text.
The solid line is a numerical solution, obtained from a bare
atom description of ARP, for the aame conditions.
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V. SUM4ARY

We have shown that a powerful and intuitive approach to adiabatic rapid

passage is obtained by using a dressed atom description of the process.

Optical analogues of atomic collision processes become quite clear in this

description, especially analogues of the Born-Oppenheimer approximation and

its violation in the Landau-Zener problem of nonadiabatic transitions. We

thus interpret the conditions of ARP as conditions for minimizing the prob-

ability of dressed atomic-state transitions during the passage through reson-

ance. Furthermore, we were able to use these probabilities to estimate the

degree of population reversal that occurs as a result of ARP, and the agree-

ment with a more accurate treatment of the problem was seen to be quite rea-

sonable.

It is appropriate to mention again that much of the groundwork for this

Interpretation has been laid by the studies of Reynaud and Cohen-Tannoudji

(1982), Horwitz (1975), and Lau (1976). Reynaud and Cohen-Tannoudji have con-

sidered the mechanisms of intra- and interdoublet transitions, and Horwitz and

Lau have analyzed the nature of adiabaticity in ARP. The present work pro-

vides a synthesis of their results as applied to ARP in the fully quantized

dressed atom. The strength of the fully quantized dressed atom approach to

this problem, rather than the semiclassical dressed atom approach as

considered by Lau (1976), is that the distinction between bare atom T, and

pure here atom T2 1 relaxation processes is manifestly clear. In our opinion

this allows a better intuitive understanding of the way relaxation enters the

problem.

Finally, w wish to point out that the similarity of the ARP problem and

the collislomal problem treated by Zener is not simply a coincidence of the

-osm of ertain mathematical equations. Rather, it indicates the underlying

importance and generality of the adiabatic theorem of quantum mechanics

(asslah, 1961). Both problems deal specifically with the condition of valid-

ity of this theorem, and the consequences of its violation; they simply couch

the condition and consequences in terms of different physical variables.

19
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to new military space systems. Versatility

and flexibility have been developed to a high degree by the laboratory person-

nel in dealing with the many problems encountered in the nation's rapidly

developing space systems. Expertise in the latest scientific developments is

vital to the accomplishment of tasks related to these problems. The labora-

tories that contribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, environmental hazards, trace detection; spacecraft structural
mechanics, contamination, thermal and structural control; high temperature
thermomechanics, gas kinetics and radiation; cw and pulsed laser development
including chemical kinetics, spectroscopy, optical resonators, beam control,
atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
laser optoelectronics, solar cell physics, battery electrochemistry, space
vacutm and radiation effects on materials, lubrication and surface phenomena,
thermlonic emission, photosensitive materials and detectors, atomic frequency
standards, and environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence and
microelectronics applications.

Electronics Research Laboratory: Microelectronics, GaAs low noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-
optics; communication sciences, applied electronics, semiconductor crystal and
device physics, radiometric imaging; millimeter wave, microwave technology,
and RF system research.

Materials Sciences Laboratory: Development of new materials: metal
matrix composites, polymers, and new forms of carbon; nondestructive evalua-
tion, component failure analysis and reliability; fracture mechanics and
stress corrosion; analysis and evaluation of materials at cryogenic and
elevated temperatures as well as in space and enemy-induced environments.

Space Sciences Laboratory: Nagnetospheric, auroral and cosmic ray phys-
ics, wave-particle interactions, magnetospheric plasm waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote

sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.
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